Issue 34, 2021

First-principles prediction of strain-induced gas-sensing tuning in tin sulfide

Abstract

A challenge in the application of two-dimensional (2D) SnS in gas-sensing field is that the SnS monolayer is highly sensitive to oxidizing gases, whereas it is naturally deactivated towards reducing gases. The non-sensitivity of SnS to reducing gases is a problem that needs to be solved urgently in an economic and effective manner. Hence, in this work, we propose a strategy of applying strain modulation on the SnS monolayer to optimize its sensitivity and selectivity for reducing gases fundamentally. Generally, the strain modulation applied on a semiconductor gives rise to a change in its band gap (BG). Based on the first-principles calculations, the strain on SnS was found to induce strong degeneracy and energy-level splitting. Unusually, the tensile strain (≥3%) applied could transform the SnS monolayer from indirect-gap semiconductors to direct-gap semiconductors, manifesting a promising optical application prospect but not appropriate for the gas-sensing filed. Comparatively, the compressive strain (≥3%) on SnS could generate new electronic states at the edge of the conduction band of the SnS monolayer, which increases the conductivity and the weak interaction. Thus, the adsorption of reducing gases on the SnS monolayer is enhanced from physisorption to chemisorption, resulting in a considerable increase in the sensitivity performance to the three reducing gas molecules (NH3, H2S, and CO). The induced symmetry breaking of the SnS monolayer under compressive strain leads to much higher surface activation towards reducing gases, which improves its adsorption capability and the ability of screening oxidizing gas molecules. The present work provides key information for novel designs of strain-sensitive dual-function sensors based on SnS.

Graphical abstract: First-principles prediction of strain-induced gas-sensing tuning in tin sulfide

Supplementary files

Article information

Article type
Paper
Submitted
19 Jun 2021
Accepted
06 Aug 2021
First published
06 Aug 2021

Phys. Chem. Chem. Phys., 2021,23, 18712-18723

First-principles prediction of strain-induced gas-sensing tuning in tin sulfide

Y. Qin, X. Shen and Y. Bai, Phys. Chem. Chem. Phys., 2021, 23, 18712 DOI: 10.1039/D1CP02770K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements