Issue 34, 2021

On the question of steric repulsion versus noncovalent attractive interactions in chiral phosphoric acid catalyzed asymmetric reactions

Abstract

The origin of enantioselectivity in asymmetric catalysis is often built around the differential steric interaction in the enantiocontrolling transition states (TSs). A closer perusal of enantiocontrolling TSs in an increasingly diverse range of reactions has revealed that the cumulative effect of weak noncovalent interactions could even outweigh the steric effects. While enunciating this balance is conspicuously important, quantification of such intramolecular forces within a TS continues to remain scarce and challenging. Herein, we demonstrate the utility of the fragment molecular orbital method in establishing the relative contributions of various attractive and repulsive contributions in the total interaction energy between the suitably chosen fragments in enantiocontrolling TSs. Three types of reactions of high contemporary importance, namely, axially chiral phosphoric acid (CPA) catalyzed kinetic resolution of rac-α-methyl-γ-hydroxy ester (reaction I), asymmetric dearomative amination of β-naphthols by dimethyl azodicarboxylate (IIa and IIb), and intramolecular desymmetrization of β,β-disubstituted methyl oxetanes (IIIa) and hydroxyl oxetane (IIIb), bearing a tethered alcohol (–OCH2CH2OH or –(CH2)2CH2OH), are considered. In all the five reactions, the differences in the stabilizing contributions arising due to electrostatic, charge-transfer, and dispersion interactions between the catalyst and the reacting partners in the enantiocontrolling transition states are weighed against the destabilizing exchange interaction. The balancing interactions are found to be between dispersion and exchange repulsion in reaction I, a combination of charge transfer and dispersion energies offsets the repulsive energy in reaction IIb involving the electron rich anthryl groups in the catalyst, whereas the –(CF3)2C6H4 3,3′-substituent in the catalyst (reaction IIa) leads to a trade-off between dispersion and exchange energies. In reactions IIIa and IIIb, however, electrostatic and dispersion energies help compensate the repulsive interactions. These quantitative insights on the intramolecular interactions in the stereocontrolling TSs could help in the rational design of asymmetric catalysis.

Graphical abstract: On the question of steric repulsion versus noncovalent attractive interactions in chiral phosphoric acid catalyzed asymmetric reactions

Supplementary files

Article information

Article type
Paper
Submitted
04 Jun 2021
Accepted
31 Jul 2021
First published
02 Aug 2021

Phys. Chem. Chem. Phys., 2021,23, 18936-18950

On the question of steric repulsion versus noncovalent attractive interactions in chiral phosphoric acid catalyzed asymmetric reactions

S. Tribedi, K. Kitaura, T. Nakajima and R. B. Sunoj, Phys. Chem. Chem. Phys., 2021, 23, 18936 DOI: 10.1039/D1CP02499J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements