Issue 34, 2021

Direct evidence for a radiation-induced synthesis of acetonitrile and isoacetonitrile from a 1 : 1 CH4⋯HCN complex at cryogenic temperatures: is it a missing link between inorganic and prebiotic astrochemistry?

Abstract

Nitriles are important constituents of extraterrestrial media. Nitriles are supposed to play a crucial role in prebiotic chemistry occurring in the interstellar medium. In this work, we have investigated the low-temperature radiation-induced transformations of a 1 : 1 CH4⋯HCN complex as a plausible precursor of the simplest nitriles using the matrix isolation approach with FTIR spectroscopic detection. The parent complexes isolated in a noble gas (Ng) matrix were obtained by deposition of the CH4/HCN/Ng gaseous mixture and characterized by comparison of experimental complexation-induced shifts of the HCN fundamentals with the results of the ab initio calculations. It was found that the X-ray irradiation of low-temperature matrices containing the isolated 1 : 1 CH4⋯HCN complex resulted in the formation of acetonitrile (CH3CN) and isoacetonitrile (CH3NC) and it appears to be the first experimental evidence for the formation of C2 nitriles (acetonitrile and isoacetonitrile) from such a “building block”. Additionally, a 1 : 1 CH4⋯HNC complex was tentatively assigned to the irradiated Ar and Kr matrices. It is demonstrated that the matrix has a strong effect on the CH3CN/CH3NC yield ratio, which dramatically increases in the row Ar < Kr < Xe. Also, the efficiency of the radiation-induced formation of the CH4⋯HNC complex was shown to decrease from Ar to Kr. It is believed that the proposed pathway for acetonitrile formation may be a significant step in the radiation-induced evolution leading to complex organic molecules and biomolecules under astrochemical conditions. Furthermore, the obtained results provide a prominent example of the impact of very weak intermolecular interactions on the radiation-induced transformations in cold media.

Graphical abstract: Direct evidence for a radiation-induced synthesis of acetonitrile and isoacetonitrile from a 1 : 1 CH4⋯HCN complex at cryogenic temperatures: is it a missing link between inorganic and prebiotic astrochemistry?

Supplementary files

Article information

Article type
Paper
Submitted
12 Apr 2021
Accepted
10 Aug 2021
First published
10 Aug 2021

Phys. Chem. Chem. Phys., 2021,23, 18449-18460

Direct evidence for a radiation-induced synthesis of acetonitrile and isoacetonitrile from a 1 : 1 CH4⋯HCN complex at cryogenic temperatures: is it a missing link between inorganic and prebiotic astrochemistry?

A. D. Volosatova, M. A. Lukianova, P. V. Zasimov and V. I. Feldman, Phys. Chem. Chem. Phys., 2021, 23, 18449 DOI: 10.1039/D1CP01598B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements