Issue 32, 2021

Magneto-optical properties of bilayer phosphorene quantum dots

Abstract

Using the tight-binding approach, we investigate the electronic and magneto-optical properties of bilayer phosphorene quantum dots (BLPQDs) in the presence of perpendicular electric and magnetic fields. The magneto-energy spectra of the BLPQDs exhibit Aharonov–Bohm oscillations. The period and the amplitude of the oscillation decrease with the size of the BLPQDs. An oscillatory behavior of the local density of states (LDOS) versus the magnetic field is observed, as well as the appearance of the spatial Aharonov–Bohm oscillations in the LDOS. In the absence of the electric field, there exists an s-fold degeneracy (s absolutely flat bands at exactly zero energy) arising from the edge-mode states, where s is the smaller value between M and N, where M and N are the number of phosphorus atoms along the x and y axis, respectively, in a rectangular BLBPQD. The absorption spectra of the BLPQDs are obtained for both in-plane and out-of-plane polarizations. Compared with the absorption spectra of graphene dots, the absorption of an out-of-plane polarization of the incident light is high compared to that of in-plane polarizations. On the other hand, the absorption spectra due to in-plane polarizations are almost the same in the case of graphene, whereas they are considerably different in BLBPQDs. Importantly, the appearance of several sharp and high absorption peaks in the near-infrared (NIR) range dictates the BLBPQDs for application and development of bioimaging, biomedicine and drug delivery technology. More importantly, both the location and intensity of these NIR peaks depend characteristically on the orientation of the polarization of the incident light, which can be desirably tuned by the simultaneous engineering of magnetic and electric fields. Such unique advantage of the anisotropic optical feature enables a new degree of freedom for achieving novel polarization-dependent photonic devices. The dual magnetic and electric field tunable optical and electrical features of the BLPQDs are expected to have important consequences for the development of multifunctional magneto-optoelectronic devices and provide insight into the applicability of quantum photopic technologies based on BLBPQDs.

Graphical abstract: Magneto-optical properties of bilayer phosphorene quantum dots

Article information

Article type
Paper
Submitted
29 Mar 2021
Accepted
16 Jun 2021
First published
09 Aug 2021

Phys. Chem. Chem. Phys., 2021,23, 17645-17655

Magneto-optical properties of bilayer phosphorene quantum dots

M. Zare and S. Haghdoust, Phys. Chem. Chem. Phys., 2021, 23, 17645 DOI: 10.1039/D1CP01377G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements