Issue 28, 2021

Microscopic shear flow simulations of a biaxial smectic A liquid crystal based on the soft ellipsoid string-fluid

Abstract

We have studied the behaviour of a biaxial smectic A liquid crystal based on the soft ellipsoid string-fluid in shear flow by molecular dynamics simulation using the SLLOD equation of motion. This is facilitated by the fact that the biaxial symmetry allows linear relations between the pressure and the velocity gradient. This means that linear irreversible thermodynamics can be applied independently of the simulations to obtain the torques determining the orientations of the system and that the predictions of this theory can be cross-checked by the simulations. It turns out that there is a torque turning the smectic layers to the orientation parallel to the vorticity plane if the simulation is started in another orientation. In the orientation parallel to the vorticity plane where the director formed by the long axes of the molecules, nw, is perpendicular to the vorticity plane there is another torque keeping the director formed by the normals of the broadsides of the molecules, nu, parallel to this plane at a constant alignment angle, ψ relative to the streamlines independently of the strain rate. Moreover, this alignment angle seems to be the one where the irreversible energy dissipation rate, , is minimal. This is in agreement with a recently proven theorem according to which is minimal in the linear regime of a nonequilibrium steady state. Finally, we studied the orientation of nu when the smectic layers are parallel to the shear plane. In a simulation this orientation is stabilised by the periodic boundary conditions. Then we found that there was a nonlinear torque turning nu to the orientation perpendicular to the streamlines thus minimising the value of even though this value is larger than the value of in the orientation parallel to the vorticity plane. This means that is minimized given the external boundary conditions.

Graphical abstract: Microscopic shear flow simulations of a biaxial smectic A liquid crystal based on the soft ellipsoid string-fluid

Article information

Article type
Paper
Submitted
03 Mar 2021
Accepted
27 Jun 2021
First published
29 Jun 2021

Phys. Chem. Chem. Phys., 2021,23, 15183-15195

Microscopic shear flow simulations of a biaxial smectic A liquid crystal based on the soft ellipsoid string-fluid

S. Sarman and A. Laaksonen, Phys. Chem. Chem. Phys., 2021, 23, 15183 DOI: 10.1039/D1CP00957E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements