Issue 31, 2021

Polariton induced conical intersection and berry phase

Abstract

We investigate the Polariton induced conical intersection (PICI) created from coupling a diatomic molecule with the quantized photon mode inside an optical cavity, and the corresponding Berry Phase effects. We use the rigorous Pauli–Fierz Hamiltonian to describe the quantum light-matter interactions between a LiF molecule and the cavity, and use the exact quantum propagation to investigate the polariton quantum dynamics. The molecular rotations relative to the cavity polarization direction play a role as the tuning mode of the PICI, resulting in an effective CI even within a diatomic molecule. To clearly demonstrate the dynamical effects of the Berry phase, we construct two additional models that have the same Born–Oppenheimer surface, but the effects of the geometric phase are removed. We find that when the initial wavefunction is placed in the lower polaritonic surface, the Berry phase causes a π phase-shift in the wavefunction after the encirclement around the CI, indicated from the nuclear probability distribution. On the other hand, when the initial wavefunction is placed in the upper polaritonic surface, the geometric phase significantly influences the couplings between polaritonic states and therefore, the population dynamics between them. These BP effects are further demonstrated through the photo-fragment angular distribution. PICI created from the quantized radiation field has the promise to open up new possibilities to modulate photochemical reactivities.

Graphical abstract: Polariton induced conical intersection and berry phase

Supplementary files

Article information

Article type
Paper
Submitted
02 Mar 2021
Accepted
16 Jul 2021
First published
19 Jul 2021

Phys. Chem. Chem. Phys., 2021,23, 16868-16879

Polariton induced conical intersection and berry phase

M. H. Farag, A. Mandal and P. Huo, Phys. Chem. Chem. Phys., 2021, 23, 16868 DOI: 10.1039/D1CP00943E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements