Issue 25, 2021

Origin of the hydrophobicity of sulfur-containing iron surfaces

Abstract

Sulfur-containing iron materials such as sulfidized nanoscale zerovalent iron (SNZVI) have shown outstanding water remediation performance in many recent studies, which is largely attributed to its high hydrophobicity compared to that of NZVI. However, the role of sulfur in the reactions, and the origin of the hydrophobicity of SNZVI, were still unclear. In this paper, for the first time, we conducted ab initio molecular dynamics simulation using an explicitly solvated model on both Fe and S-containing Fe surfaces, to explore the hydrophobicity of S-containing Fe materials. We found that the high hydrophobicity of these S-containing Fe surfaces originates from the hydrophobic nature of S: both doping S on top of the Fe surface and inserting S onto an Fe surface can significantly improve the surface hydrophobicity by increasing the distance between the water layer and the Fe surface. This exposes empty Fe sites which do not interact with water and in turn reduces hydrogen evolution. To compare with the theoretical analysis, we experimentally analyzed the hydrophobicity of both NZVI and SNZVI surfaces, leading to a good agreement with our theoretical analysis. We then theoretically show that the doping of other p-block elements (e.g., N and P) to iron surfaces can also create a hydrophobic phenomenon. Most importantly, this study points out that the potential contribution of hydrophobicity to the reactivity on liquid-phase reaction materials should not be ignored in the mechanistic analysis.

Graphical abstract: Origin of the hydrophobicity of sulfur-containing iron surfaces

Supplementary files

Article information

Article type
Paper
Submitted
07 Feb 2021
Accepted
27 May 2021
First published
28 May 2021

Phys. Chem. Chem. Phys., 2021,23, 13971-13976

Origin of the hydrophobicity of sulfur-containing iron surfaces

H. Li, W. Yang, C. Wu and J. Xu, Phys. Chem. Chem. Phys., 2021, 23, 13971 DOI: 10.1039/D1CP00588J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements