Issue 8, 2021

Giant exchange bias induced via tuning interfacial spins in polycrystalline Fe3O4/CoO bilayers

Abstract

A giant exchange bias (EB) of 9600 Oe was observed in polycrystalline Fe3O4/CoO layers at 10 K after 20 kOe field cooling, and was attributed to the strong exchange coupling formed by the interfacial spins between the polycrystalline Fe3O4 and the CoO layer. It was found that at 10 K, the magnetic-moment difference (ΔM) between the zero field cooling curves and field cooling curves first increases and then decreases with the change of the field, and it reaches the maximum value at a field of 20 kOe, which suggests that the interfacial spins can be tuned by the cooling field. Furthermore, other magnetic properties, including field dependence, temperature dependence, and training effects, were investigated, which further confirmed that the interfacial spins play an important role in the EB effect. This work provides a method to tune the magnitude of the EB effect and reveals the mechanism of the dependency of EB on interfacial spins, which could guide the design of giant-EB-effect materials.

Graphical abstract: Giant exchange bias induced via tuning interfacial spins in polycrystalline Fe3O4/CoO bilayers

Article information

Article type
Paper
Submitted
12 Nov 2020
Accepted
02 Feb 2021
First published
02 Feb 2021

Phys. Chem. Chem. Phys., 2021,23, 4805-4810

Giant exchange bias induced via tuning interfacial spins in polycrystalline Fe3O4/CoO bilayers

F. Tian, Y. Li, Q. Zhao, K. Cao, D. Wang, Z. Dai, Z. Yu, X. Ke, Y. Zhang, C. Zhou, W. Zuo, S. Yang and X. Song, Phys. Chem. Chem. Phys., 2021, 23, 4805 DOI: 10.1039/D0CP05902A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements