Abstract
Dynamic organic crystals have come to the fore as potential lightweight alternatives to inorganic actuators providing high weight-to-force ratios. We have observed pressure-induced superelastic behaviour in Form I of isonicotinamide. The reversible single-crystal to single-crystal transformation exhibited by the system is an important component for functioning actuators. Crucially, our observations have enabled us to propose a mechanism for the molecular movement supported by Pixel energy calculations, that may pave the way for the future design and development of functioning dynamic crystals.

Please wait while we load your content...