Issue 7, 2021

Engineering calcium peroxide based oxygen generating scaffolds for tissue survival

Abstract

Oxygen supply is essential for the long-term viability and function of tissue engineered constructs in vitro and in vivo. The integration with the host blood supply as the primary source of oxygen to cells requires 4 to 5 weeks in vivo and involves neovascularization stages to support the delivery of oxygenated blood to cells. Consequently, three-dimensional (3D) encapsulated cells during this process are prone to oxygen deprivation, cellular dysfunction, damage, and hypoxia-induced necrosis. Here we demonstrate the use of calcium peroxide (CaO2) and polycaprolactone (PCL), as part of an emerging paradigm of oxygen-generating scaffolds that substitute the host oxygen supply via hydrolytic degradation. The 35-day in vitro study showed predictable oxygen release kinetics that achieved 5% to 29% dissolved oxygen with increasing CaO2 loading. As a biomaterial, the iterations of 0 mg, 40 mg, and 60 mg of CaO2 loaded scaffolds yielded modular mechanical behaviors, ranging from 5–20 kPa in compressive strength. The other controlled physiochemical features included swelling capacities of 22–33% and enzymatic degradation rates of 0.8% to 60% remaining mass. The 3D-encapsulation experiments of NIH/3T3 fibroblasts, L6 rat myoblasts, and primary cardiac fibroblasts in these scaffolds showed enhanced cell survival, proliferation, and function under hypoxia. During continuous oxygen release, the scaffolds maintained a stable tissue culture system between pH 8 to 9. The broad basis of this work supports prospects in the expansion of robust and clinically translatable tissue constructs.

Graphical abstract: Engineering calcium peroxide based oxygen generating scaffolds for tissue survival

Article information

Article type
Paper
Submitted
02 Dec 2020
Accepted
22 Jan 2021
First published
10 Feb 2021

Biomater. Sci., 2021,9, 2519-2532

Engineering calcium peroxide based oxygen generating scaffolds for tissue survival

S. Suvarnapathaki, M. A. Nguyen, A. A. Goulopoulos, D. Lantigua and G. Camci-Unal, Biomater. Sci., 2021, 9, 2519 DOI: 10.1039/D0BM02048F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements