Issue 14, 2021

Development and validation of a point-of-care breath test for octane detection

Abstract

Background: There is a demand for a non-invasive bedside method to diagnose Acute Respiratory Distress Syndrome (ARDS). Octane was discovered and validated as the most important breath biomarker for diagnosis of ARDS using gas-chromatography and mass-spectrometry (GC-MS). However, GC-MS is unsuitable as a point-of-care (POC) test in the intensive care unit (ICU). Therefore, we determined if a newly developed POC breath test can reliably detect octane in exhaled breath of invasively ventilated ICU patients. Methods: Two developmental steps were taken to design a POC breath test that relies on gas-chromatography using air as carrier gas with a photoionization detector. Calibration measurements were performed with a laboratory prototype in healthy subjects. Subsequently, invasively ventilated patients were included for validation and assessment of repeatability. After evolving to a POC breath test, this device was validated in a second group of invasively ventilated patients. Octane concentration was based on the area under the curve, which was extracted from the chromatogram and compared to known values from calibration measurements. Results: Five healthy subjects and 53 invasively ventilated patients were included. Calibration showed a linear relation (R2 = 1.0) between the octane concentration and the quantified octane peak in the low parts per billion (ppb) range. For the POC breath test the repeatability was excellent (R2 = 0.98, ICC = 0.97 (95% CI 0.94–0.99)). Conclusion: This is the first study to show that a POC breath test can rapidly and reliably detect octane, with excellent repeatability, at clinically relevant levels of low ppb in exhaled breath of ventilated ICU patients. This opens possibilities for targeted exhaled breath analysis to be used as a bedside test and makes it a potential diagnostic tool for the early detection of ARDS.

Graphical abstract: Development and validation of a point-of-care breath test for octane detection

Article information

Article type
Paper
Submitted
03 Mar 2021
Accepted
10 Jun 2021
First published
16 Jun 2021
This article is Open Access
Creative Commons BY-NC license

Analyst, 2021,146, 4605-4614

Development and validation of a point-of-care breath test for octane detection

L. A. Hagens, A. R. M. Verschueren, A. Lammers, N. F. L. Heijnen, M. R. Smit, T. M. E. Nijsen, I. Geven, M. J. Schultz, D. C. J. J. Bergmans, R. M. Schnabel and L. D. J. Bos, Analyst, 2021, 146, 4605 DOI: 10.1039/D1AN00378J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements