Issue 10, 2021

Inkjet-printed O2 gas sensors in intelligent packaging

Abstract

An inkjet printed membrane is presented as a colorimetric sensor for oxygen for use in smart packaging, in order to quickly inform the consumer about possible degradation reactions in modified atmosphere products (MAP). The colorimetric sensor is based on the redox dye, toluidine blue (TB), a sacrificial electron donor, glycerol, and, hydroxypropyl methylcellulose, as the hydrophilic polymeric matrix. The UVC-wavelength activated TB is photoreduced by SnO2 nanoparticle ink. This colorimetric oxygen indicator stays colourless upon exposure in nitrogen atmosphere to 7 min UVC light (6 W·cm−2). The photoreduced TB to leuco TB recovers its original colour upon exposure to oxygen for 55 min under ambient conditions (∼21 °C, ∼55%RH, 21% O2). The characteristics of the sensor have been evaluated, including its functionality through the colorimetric response to different oxygen concentrations as well as the influence of experimental variables such as humidity and temperature using a digital camera as the detector. The results obtained show that: (1) the colorimetric sensor remains stable in the absence of oxygen; (2) relative humidity greater than 60% significantly affects the reoxidation process; and (3) the temperature has a significant influence on the colour recovery, although the stability increases considerably when the sensor is kept refrigerated at 4 °C. A real application to packaged ham was performed, demonstrating that the printed colorimetric sensor is stable for at least 48 hours once activated and when the container deteriorates upon the entrance of oxygen, the sensor returns to its original blue colour, demonstrating its utility as a UVC-activated colorimetric oxygen sensor.

Graphical abstract: Inkjet-printed O2 gas sensors in intelligent packaging

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
17 Feb 2021
Accepted
26 Mar 2021
First published
29 Mar 2021
This article is Open Access
Creative Commons BY license

Analyst, 2021,146, 3177-3184

Inkjet-printed O2 gas sensors in intelligent packaging

M. D. Fernández-Ramos, M. Pageo-Cabrera, L. F. Capitán-Vallvey and I. M. Pérez de Vargas-Sansalvador, Analyst, 2021, 146, 3177 DOI: 10.1039/D1AN00295C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements