Issue 35, 2020

A near-infrared light-triggered shape-memory polymer for long-time fluorescence imaging in deep tissues

Abstract

Implanting a stent in the body through a minimally invasive operation and tracking its location in real-time is still a challenge. Herein, a near-infrared (NIR) light-triggered shape-memory polymer possessing a long-time fluorescence imaging function has been developed by cross-linking 6-arm poly(ethylene glycol)–poly(ε-caprolactone) using a croconate dye YHD798 as the chemical crosslinker and NIR-absorption perssad. Due to the extraordinary photothermal conversion property of YHD798, the temperature of the material raised from 20 °C to 120 °C under 808 nm near-infrared irradiation at 0.4 W cm−2, leading to shape recovery in 50 s in a programmed shape-transition process. YHD798 also exerted an aggregation-induced emission effect, endowing the polymer with a clear NIR fluorescence imaging function even when covered by a 2 mm pork slab and could be used for the real-time visualization of the implanted device fabricated from this polymer in deep tissues of the body. When a tubular stent that was fabricated from this polymer, was implanted into the carotid artery of a Sprague-Dawley rat, it could recover to its permanent shape under 808 nm laser irradiation in 60 s owing to the shape-memory function and facilitated NIR-I fluorescence imaging after implantation for a week owing to the croconate dye. This work provides a new strategy for designing and developing smart polymers with NIR-light-triggered shape-memory effect and long-term fluorescence imaging function for biomedical applications.

Graphical abstract: A near-infrared light-triggered shape-memory polymer for long-time fluorescence imaging in deep tissues

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2020
Accepted
24 Jul 2020
First published
27 Jul 2020

J. Mater. Chem. B, 2020,8, 8061-8070

A near-infrared light-triggered shape-memory polymer for long-time fluorescence imaging in deep tissues

C. Chu, Z. Xiang, J. Wang, H. Xie, T. Xiang and S. Zhou, J. Mater. Chem. B, 2020, 8, 8061 DOI: 10.1039/D0TB01237H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements