Issue 42, 2020

Structure, electrical conductivity and oxygen transport properties of Ruddlesden–Popper phases Lnn+1NinO3n+1 (Ln = La, Pr and Nd; n = 1, 2 and 3)

Abstract

Layered Ruddlesden–Popper (RP) lanthanide nickelates, Lnn+1NinO3n+1 (Ln = La, Pr and Nd; n = 1, 2 and 3), are considered potential cathode materials in solid oxide fuel cells. In this study, the thermal evolution of the structure, oxygen nonstoichiometry, electrical conductivity and oxygen transport properties of La2NiO4+δ, Nd2NiO4+δ, La3Ni2O7−δ, La4Ni3O10−δ, Pr4Ni3O10−δ and Nd4Ni3O10−δ are investigated. Phase transitions involving a disruption of the cooperative tilting of the perovskite layers in the low-temperature structure thereby transforming it to a more symmetric structure are observed in several of the materials upon heating in air. Pr4Ni3O10−δ and Nd4Ni3O10−δ show no phase transition from room temperature up to 1000 °C. High density ceramics (>96%) are obtained after sintering at 1300 °C and (for n = 2 and n = 3 members) post-sintering annealing at reduced temperatures. Data for the electrical conductivity measurements on these specimens indicate itinerant behaviour of the charge carriers in the RP nickelates. The increase in p-type conductivity with the order n of the RP phase is interpreted as arising from the concomitant increase in the formal valence of Ni. The observations can be interpreted in terms of a simple energy band scheme, showing that electron holes are formed in the σx2y2↑ band upon increasing the oxidation state of Ni. Electrical conductivity relaxation measurements reveal remarkable similarities between the surface exchange coefficients (kchem) of the different RP phases despite the differences in the order parameter n and the nature of the lanthanide ion. Calculation of the oxygen self-diffusion coefficients (Ds) from the experimental values of the chemical diffusion coefficients (Dchem), using the corresponding data of oxygen non-stoichiometry from thermogravimetry measurements, shows that these are strongly determined by the order parameter n. The value of Ds decreases almost one order of magnitude on going from the n = 1 members La2NiO4+δ and Nd2NiO4+δ to the n = 2 member La3Ni2O7−δ, and again one order of magnitude on going to the n = 3 members La4Ni3O10−δ, Pr4Ni3O10−δ and Nd4Ni3O10−δ. The results confirm that oxygen-ion transport in the investigated RP nickelates predominantly occurs via an interstitialcy mechanism within the rock-salt layer of the structures.

Graphical abstract: Structure, electrical conductivity and oxygen transport properties of Ruddlesden–Popper phases Lnn+1NinO3n+1 (Ln = La, Pr and Nd; n = 1, 2 and 3)

Supplementary files

Article information

Article type
Paper
Submitted
09 Jul 2020
Accepted
30 Sep 2020
First published
01 Oct 2020
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2020,8, 22206-22221

Structure, electrical conductivity and oxygen transport properties of Ruddlesden–Popper phases Lnn+1NinO3n+1 (Ln = La, Pr and Nd; n = 1, 2 and 3)

J. Song, D. Ning, B. Boukamp, J. Bassat and H. J. M. Bouwmeester, J. Mater. Chem. A, 2020, 8, 22206 DOI: 10.1039/D0TA06731H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements