Issue 5, 2020

Fabricating highly efficient heterostructured CuBi2O4 photocathodes for unbiased water splitting

Abstract

Developing photocathodes with a high photocurrent density and large onset potential is crucial for achieving solar driven water splitting. Herein, we report an efficient copper bismuth oxide (CuBi2O4) photocathode with a unique two-dimensional (2D) porous heterojunction structure. By designing a type II heterojunction structure with CuO, the resultant CuBi2O4/CuO photocathode exhibits a photocurrent density of 1.49 mA cm−2 at 0.6 VSHE, which is over 2 times that of the pristine CuBi2O4 photocathode. Further anodization treatment leads to an improved photocurrent density of 1.87 mA cm−2 at 0.6 VSHE, which is the highest photoresponse for CuBi2O4-based photocathodes. The synergistic effect of high surface area, short charge transfer distance in the 2D structure, efficient charge transfer and improved conductivity are the key reasons for the good performance of the CuBi2O4/CuO photocathodes. Moreover, the onset potential of the anodized CuBi2O4/CuO photocathode was over 1.1 VSHE, enabling an unbiased photoelectrochemical water splitting process by combining with a BiVO4 photoanode. This work highlights the good potential of CuBi2O4 in achieving a spontaneous overall water splitting process.

Graphical abstract: Fabricating highly efficient heterostructured CuBi2O4 photocathodes for unbiased water splitting

Supplementary files

Article information

Article type
Paper
Submitted
05 Oct 2019
Accepted
13 Dec 2019
First published
16 Dec 2019

J. Mater. Chem. A, 2020,8, 2498-2504

Fabricating highly efficient heterostructured CuBi2O4 photocathodes for unbiased water splitting

S. A. Monny, L. Zhang, Z. Wang, B. Luo, M. Konarova, A. Du and L. Wang, J. Mater. Chem. A, 2020, 8, 2498 DOI: 10.1039/C9TA10975G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements