Issue 39, 2020

Molecular recognition mechanisms directing the self-assembly of biological structures

Abstract

Self-assembling may be defined as the spontaneous association of material units into structures that are often capable of cyclic reorganization and functional behavior. Various molecular recognition processes stabilize assemblies of polymers and biological structures. The present article analyzes cases in which chemical, shape and other recognition mechanisms are individually or cooperatively operative. Simpler self-assembling theories reported in the literature are highlighted. Detailed processes for which chemical recognition is the prevailing, enthalpy-driven, process include the non-ideal component of miscibility, supramolecular polymerization, host–guest complexes and template polymerization. Also discussed are systems such as liquid crystalline closed polymers, ternary mesogenic systems and rigid crystalline polymers for which shape recognition is the prevailing entropy-driven process. Other recognition mechanisms include ion condensation effects, hydrophobic bonding and growth-coupled-to-orientation. Combinations of various recognition mechanisms are particularly evident in biological structures. Self-assembling mechanisms involved in the genesis of some biological systems can be scientifically identified, but much more needs to be known to describe the “engineered” assembling modes that support complex functional organs.

Graphical abstract: Molecular recognition mechanisms directing the self-assembly of biological structures

Article information

Article type
Perspective
Submitted
16 Jul 2020
Accepted
24 Sep 2020
First published
05 Oct 2020

Soft Matter, 2020,16, 8985-8995

Molecular recognition mechanisms directing the self-assembly of biological structures

A. Ciferri, Soft Matter, 2020, 16, 8985 DOI: 10.1039/D0SM01301C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements