Issue 33, 2020

Anisotropy versus fluctuations in the fractal self-assembly of gold nanoparticles

Abstract

In a recent report, the fractal self-assembly of gold nanoparticles (AuNPs) having a directional feature was observed in the presence of visible light. Therein, the visible light, an external parameter, was suspected to be responsible for the directional feature. Herein, we investigate the intrinsic factors, the aspect size ratio p and the size a of AuNPs, in modulating the fractal characteristics of their self-assemblies. Through light scattering experiments and microscopic imaging, we demonstrate the transition of morphologies from fractal-like to cross-shaped in gold colloidal aggregates with particles having nearly spherical and ellipsoidal shapes, respectively. The transition indicates the competitive role of anisotropy and fluctuations in deciding the morphological characteristics of the aggregates. By taking noise-reduced diffusion-limited aggregation (NRDLA) as a model system, we address the shape and size induced noise of the particles in the colloidal systems which are prone to form fractal aggregates. We qualitatively relate the noise due to the particles having a distinct aspect size ratio p and size a with the noise reduction parameter m of NRDLA. The realistic nature of the experimental systems, where the particles of different p and a are present during the growth process, is incorporated by introducing the Gaussian noise reduction in diffusion-limited aggregation (DLA). The morphological phase transition in Gaussian noise reduced DLA is characterized, and its relevance for accounting the shape and size originated noise fluctuations during the fractal growth process is discussed. The results of the present study may be used for tailored applications of AuNPs in drug delivery, biomedicine, biosensing, and cancer nanotechnology.

Graphical abstract: Anisotropy versus fluctuations in the fractal self-assembly of gold nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
20 Mar 2020
Accepted
16 Jul 2020
First published
17 Jul 2020

Soft Matter, 2020,16, 7778-7788

Anisotropy versus fluctuations in the fractal self-assembly of gold nanoparticles

A. Singh, S. Khatun and A. N. Gupta, Soft Matter, 2020, 16, 7778 DOI: 10.1039/D0SM00485E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements