Effects of eigen and actual frequencies of soft elastic surfaces on droplet rebound from stationary flexible feather vanes
Abstract
The aim of this paper is to investigate the effect of eigenfrequency and the actual frequency of the elastic surface for droplet rebound. The elastic surface used in this study is the stationary flexible feather vanes. A fluid-structure interaction (FSI) numerical model is proposed to predict the phenomenon, and later it is validated by an experiment where droplets impact the stationary flexible feather vanes. The effect of mass and stiffness of the surface is analysed. First, a suitable combination of mass and stiffness of the surface will enhance the drop rebound. Second, a small mass system with a higher eigenfrequency will decrease the minimum contact time. Finally, the actual frequencies of the elastic surface, approximately 75 Hz, can accelerate the drop rebound for all cases.