Issue 17, 2020

Surface-topology-controlled mechanical characteristics of triply periodic carbon Schwarzite foams

Abstract

Bulky sp2-carbon Schwarzites with negative Gaussian curvature are promising structures for practical applications due to their unique properties such as high surface area, large porosity, and stability against graphitization. Herein, a comprehensive study on the tension, compression and shear mechanical characteristics of seven triply periodic carbon Schwarzite foams with distinct topologies is performed using reactive molecular dynamics (MD) simulations. All carbon Schwarzites exhibit unique thermal and mechanical properties that are markedly dictated by the topology. One of the structures presents a negative thermal expansion coefficient. Under uniaxial tension, the temperature is able to play a positive or negative role in the tensile stiffness, and there is no apparent positive relationship between tensile strength and mass density. Subjected to compression and shear loads, carbon Schwarzites can fail due to brittle fracture, and uniform and stepwise structural instabilities. Both compression- and tension-negative Poisson's ratios are revealed to originate from a curvature-flattening deformation mechanism. Analysis of the crush force efficiency, the stroke efficiency and the energy-absorption demonstrates that carbon Schwarzites are effective energy-absorbers. This study provides a fundamental understanding of the relationship between the topology and mechanical properties of carbon Schwarzites for designing 3D graphitic nanostructures with good mechanical performances.

Graphical abstract: Surface-topology-controlled mechanical characteristics of triply periodic carbon Schwarzite foams

Article information

Article type
Paper
Submitted
22 Jan 2020
Accepted
07 Apr 2020
First published
10 Apr 2020

Soft Matter, 2020,16, 4324-4338

Surface-topology-controlled mechanical characteristics of triply periodic carbon Schwarzite foams

H. Gong, J. Liu, K. Xu, J. Wu and Y. Li, Soft Matter, 2020, 16, 4324 DOI: 10.1039/D0SM00136H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements