Drop impact on thin powder layers: pattern formation by air entrapment†
Abstract
Impact of drops on thin powder layers displaces the powder particles radially outward producing shallow craters with thick rims, for example, as observed on dust layers on the floor. Here, we report that the patterns formed on thin powder layers by drop impact are not limited to such crater-like ones. Instead, depending upon the layer properties, disc or disc-plus-ring shaped patterns are formed at the impact point. We show that air entrapment and micro-bubble formation during the drop impact result in the formation of such patterns. Based on high-speed imaging, scaling analyses, and measurements with various liquids and powder layers, we propose a mechanism for the formation of such patterns. The phenomenon that we report can open further investigations on drop impact on the granular matter.