Jump to main content
Jump to site search

Issue 40, 2020
Previous Article Next Article

Enantioselective synthesis of highly oxygenated acyclic quaternary center-containing building blocks via palladium-catalyzed decarboxylative allylic alkylation of cyclic siloxyketones

Author affiliations

Abstract

The development of a palladium-catalyzed enantioselective decarboxylative allylic alkylation of cyclic siloxyketones to produce enantioenriched silicon-tethered heterocycles is reported. The reaction proceeds smoothly to provide products bearing a quaternary stereocenter in excellent yields (up to 91% yield) with high levels of enantioselectivity (up to 94% ee). We further utilized the unique reactivity of the siloxy functionality to access chiral, highly oxygenated acyclic quaternary building blocks. In addition, we subsequently demonstrated the utility of these compounds through the synthesis of a lactone bearing vicinal quaternary-trisubstituted stereocenters.

Graphical abstract: Enantioselective synthesis of highly oxygenated acyclic quaternary center-containing building blocks via palladium-catalyzed decarboxylative allylic alkylation of cyclic siloxyketones

Back to tab navigation

Supplementary files

Article information


Submitted
09 Aug 2020
Accepted
10 Sep 2020
First published
15 Sep 2020

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2020,11, 11068-11071
Article type
Edge Article

Enantioselective synthesis of highly oxygenated acyclic quaternary center-containing building blocks via palladium-catalyzed decarboxylative allylic alkylation of cyclic siloxyketones

A. Ngamnithiporn, T. Iwayama, M. D. Bartberger and B. M. Stoltz, Chem. Sci., 2020, 11, 11068
DOI: 10.1039/D0SC04383D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements