Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 28, 2020
Previous Article Next Article

Redox-controlled chalcogen-bonding at tellurium: impact on Lewis acidity and chloride anion transport properties

Author affiliations

Abstract

Our interests in the chemistry of atypical main group Lewis acids have led us to devise strategies that augment the affinity of chalcogen-bond donors for anionic guests. In this study, we describe the oxidative methylation of diaryltellurides as one such strategy along with its application to the synthesis of [Mes(C6F5)TeMe]+ and [(C6F5)2TeMe]+ starting from Mes(C6F5)Te and (C6F5)2Te, respectively. These new telluronium cations have been evaluated for their ability to complex and transport chloride anions across phospholipid bilayers. These studies show that, when compared to their neutral Te(II) precursors, these Te(IV) cations display both higher Lewis acidity and transport activity. The positive attributes of these telluronium cations, which originate from a lowering of the tellurium-centered σ* orbitals and a deepening of the associated σ-holes, demonstrate that the redox state of the main group element provides a convenient handle over its chalcogen-bonding properties.

Graphical abstract: Redox-controlled chalcogen-bonding at tellurium: impact on Lewis acidity and chloride anion transport properties

Back to tab navigation

Supplementary files

Article information


Submitted
21 May 2020
Accepted
02 Jul 2020
First published
06 Jul 2020

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2020,11, 7495-7500
Article type
Edge Article

Redox-controlled chalcogen-bonding at tellurium: impact on Lewis acidity and chloride anion transport properties

B. Zhou and F. P. Gabbaï, Chem. Sci., 2020, 11, 7495
DOI: 10.1039/D0SC02872J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements