Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 8, 2020
Previous Article Next Article

A continuous-flow approach for the multi-gram scale synthesis of C2-alkyl- or β-amino functionalized 1,3-dicarbonyl derivatives and ondansetron drug using 1,3-dicarbonyls

Author affiliations

Abstract

Continuous-flow chemistry is a modern technology that encompasses the green chemistry principles for the multi-gram synthesis of various API and drugs. Herein, we have developed a highly efficient and environmentally benign metal-free alkylation of 1,3-dicarbonyl compounds using secondary alcohols in the presence of inexpensive Amberlyst®-15 under continuous-flow. This method has a broad substrate scope with a variety of secondary alcohols and water as a byproduct. The Amberlyst®-15 is recyclable and reusable for the alkylation reaction under batch/continuous-flow technology. Furthermore, a continuous-flow technology driven Mannich reaction was demonstrated under an acid-free condition. In addition, a continuous-flow Fischer indole strategy for the ondansetron with an improved yield was demonstrated. Additionally, all these reactions were demonstrated with multi-gram scale synthesis without lowering the yield under batch/continuous-flow technology.

Graphical abstract: A continuous-flow approach for the multi-gram scale synthesis of C2-alkyl- or β-amino functionalized 1,3-dicarbonyl derivatives and ondansetron drug using 1,3-dicarbonyls

Back to tab navigation

Supplementary files

Article information


Submitted
29 Apr 2020
Accepted
19 Jun 2020
First published
19 Jun 2020

React. Chem. Eng., 2020,5, 1501-1508
Article type
Paper

A continuous-flow approach for the multi-gram scale synthesis of C2-alkyl- or β-amino functionalized 1,3-dicarbonyl derivatives and ondansetron drug using 1,3-dicarbonyls

N. Mohanta, K. Nair, D. V. Sutar and B. Gnanaprakasam, React. Chem. Eng., 2020, 5, 1501
DOI: 10.1039/D0RE00171F

Social activity

Search articles by author

Spotlight

Advertisements