Issue 73, 2020, Issue in Progress

A novel fabrication technique for high-aspect-ratio nanopillar arrays for SERS application

Abstract

A novel technique is demonstrated for the fabrication of silicon nanopillar arrays with high aspect ratios. Our technique leverages on an “antenna effect” present on a chromium (Cr) hard mask during ion-coupled plasma (ICP) etching. Randomly distributed sharp tips around the Cr edge act as antennas that attract etchant ions, which in turn enhance the etching of the Cr edge. This antenna effect leads to a smaller Cr mask size and thus a smaller nanopillar diameter. With optimized SF6 and CHF3 gas flow during ICP etching, we could achieve nanopillar arrays with sub-30 nm diameter, over 20 aspect ratio, and steep sidewall without collapse. The proposed technique may help break the limit of traditional nanopillar array fabrication, and be applied in many areas, such as Surface-Enhanced Raman Scattering (SERS). A series of SERS simulations performed on nanopillar arrays fabricated by this technique show an obvious Raman spectrum intensity enhancement. This enhancement becomes more obvious when the diameter of the nanopillar becomes smaller and the aspect ratio becomes higher, which may be explained by a high light absorption, the lightning-rod effect, and a greater number of free electrons available at the surface due to the higher density of the surface state.

Graphical abstract: A novel fabrication technique for high-aspect-ratio nanopillar arrays for SERS application

Article information

Article type
Paper
Submitted
27 Oct 2020
Accepted
02 Dec 2020
First published
21 Dec 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 45037-45041

A novel fabrication technique for high-aspect-ratio nanopillar arrays for SERS application

T. Duan, C. Gu, D. S. Ang, K. Xu and Z. Liu, RSC Adv., 2020, 10, 45037 DOI: 10.1039/D0RA09145F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements