Issue 64, 2020, Issue in Progress

The sensitive detection of methylene blue using silver nanodecahedra prepared through a photochemical route

Abstract

In this work, we have carried out systematic studies on the critical role of polyvinyl pyrrolidone (PVP) and citrate in the well-known chemical reduction route to synthesize silver nanodecahedra (AgND). Silver nitrate (AgNO3) was used as silver source, which can be directly converted to metallic silver after being reduced by sodium borohydride (NaBH4) under blue light-emitting diode (LED) irradiation (λmax = 465 nm), and polyvinyl pyrrolidone (PVP) as a capping agent to assist the growth of AgND. The obtained products were silver nanodecahedra of excellent uniformity and stability with high efficiency and yield. The results showed that PVP acted as a capping agent to stabilize the silver nanoparticles, prolonging the initiation time required for nanodecahedra nucleation, thus inducing anisotropic growth, allowing the size and morphology of the AgND to be controlled successfully. This improved understanding allows a consistent process for the synthesis of AgND with significantly enhanced reproducibility to be developed and the formation mechanism of these nanostructures to be elucidated. This is a simple, cost-effective and easily reproducible method for creating AgND. The typical absorption maxima in the UV-vis spectroscopy of Ag seeds was λmax ∼400 nm and that of AgND was λmax ∼480 nm. The size of the prepared AgND was in the range of 60–80 nm. SEM images confirmed the uniform and high density of AgND when the concentration of PVP was 0.5 mM. The XRD pattern showed that the final product of AgND was highly crystallized. In addition, the prepared AgND can be used to detect methylene blue (MB) in a sensitive manner with good reproducibility and stability using Surface-Enhanced Raman Scattering (SERS) phenomenon. Out of the obtained products, the AgND prepared with 50 min blue LED light irradiation (AgND-50) displayed the strongest SERS signal. Interestingly, MB in diluted solution can be detected with a concentration as low as 10−7 M (the limit of detection, LOD) and the linear dependence between SERS intensity and the MB concentration occurred in the range from 10−7 to 10−6 M. The enhancement factor (EF) of the SERS effect was about 1.602 × 106 with a MB concentration of 10−7 M using 532 nm laser excitation.

Graphical abstract: The sensitive detection of methylene blue using silver nanodecahedra prepared through a photochemical route

Article information

Article type
Paper
Submitted
14 Sep 2020
Accepted
19 Oct 2020
First published
23 Oct 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 38974-38988

The sensitive detection of methylene blue using silver nanodecahedra prepared through a photochemical route

X. H. Vu, N. D. Dien, T. T. Ha Pham, T. T. Trang, N. X. Ca, P. T. Tho, N. D. Vinh and P. Van Do, RSC Adv., 2020, 10, 38974 DOI: 10.1039/D0RA07869G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements