Issue 59, 2020, Issue in Progress

Cu oxidation kinetics through graphene and its effect on the electrical properties of graphene

Abstract

The oxidation kinetics of Cu through graphene were evaluated from the surface coverage of Cu oxide (Fox) by varying the oxidation time (tox = 10–360 min) and temperature (Tox = 180–240 °C) under an air environment. Fox, as a function of time, well followed the Johnson–Mehl–Avrami–Kolmogorov equation; thus, the activation energy of Cu oxidation was estimated as 1.5 eV. Transmission electron microscopy studies revealed that Cu2O formed on the top of the graphene at grain boundaries (G-GBs), indicating that Cu2O growth was governed by the out-diffusion of Cu through G-GBs. Further, the effect of Cu oxidation on graphene quality was investigated by measuring the electrical properties of graphene after transferring. The variation of the sheet resistance (Rs) as a function of tox at all Tox was converted into one curve as a function of Fox. Rs of 250 Ω sq−1 was constant, similar to that of as-grown graphene up to Fox = 15%, and then increased with Fox. The Hall measurement revealed that the carrier concentration remained constant in the entire range of Fox, and Rs was solely related to the decrease in the Hall mobility. The variation in Hall mobility was examined according to the graphene percolation probability model, simulating electrical conduction on G-GBs during Cu2O evolution. This model well explains the constant Hall mobility within Fox = 15% and drastic Fox degradation of 15–50% by the concept that the electrical conduction of graphene is disconnected by Cu2O formation along with the G-GBs. Therefore, we systematically developed the oxidation kinetics of Cu through graphene and simultaneously examined the changes in the electrical properties of graphene.

Graphical abstract: Cu oxidation kinetics through graphene and its effect on the electrical properties of graphene

Supplementary files

Article information

Article type
Paper
Submitted
20 Jul 2020
Accepted
21 Sep 2020
First published
28 Sep 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 35671-35680

Cu oxidation kinetics through graphene and its effect on the electrical properties of graphene

M. Kim, K. Kim, M. Kim, S. Lee, K. H. Lee, H. Kim, H. Kim and K. Kim, RSC Adv., 2020, 10, 35671 DOI: 10.1039/D0RA06301K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements