Issue 69, 2020, Issue in Progress

Effects of the surface polarity of nanomaterials on their interaction with complement protein gC1q

Abstract

There are increasing studies about the biocompatibility of nanomaterials (NMs) as their applications in biomedicine become more widespread. The biocompatibility of NMs involves the recognition by the immune system including complement protein gC1q. In this work, the interaction of graphene oxide (GO) and self-assembled monolayer (SAM)-coated gold (111) surface with gC1q was studied by molecular dynamics (MD) simulations. The impacts of surface polarity of GO on its interaction with gC1q and the possible immune response were discussed by comparing the binding behavior of gC1q to the GO sheets with different oxidation degrees (i.e., C5O1(OH)1 and C20O1(OH)1). We find the ghB module of gC1q tends to bind to GO sheet (C5O1(OH)1) with strong surface polarity, as the ghB module forms more hydrogen bonds with this GO sheet. On the other hand, the ghC module of gC1q tends to bind to GO (C20O1(OH)1) with weak surface polarity, as the ghC module tends to form pi–pi stacking and stronger hydrophobic interaction with this GO sheet. Similar phenomena are also found in the adsorption of gC1q with SAM: ghC prefers to bind to hydrophobic CH3-SAM, and ghB prefers to bind to charged COO-SAM. The different binding modules of gC1q may result in different activation levels of complement system. Our findings suggest that the surface polarity of NMs regulates the interaction of NMs with gC1q and the subsequent immune response. In other words, the biocompatibility of NMs may be regulated by adjusting their surface polarity.

Graphical abstract: Effects of the surface polarity of nanomaterials on their interaction with complement protein gC1q

Supplementary files

Article information

Article type
Paper
Submitted
23 Jun 2020
Accepted
08 Nov 2020
First published
18 Nov 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 41993-42000

Effects of the surface polarity of nanomaterials on their interaction with complement protein gC1q

S. Wang, X. Ou, Y. Wutthinitikornkit, M. Yi and J. Li, RSC Adv., 2020, 10, 41993 DOI: 10.1039/D0RA05493C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements