Issue 42, 2020, Issue in Progress

A dual emission metal–organic framework for rapid ratiometric fluorescence detection of CO32− in seawater

Abstract

A dual emission metal–organic framework (IRMOF-10-Eu) was prepared and used as a ratiometric fluorescent sensor for CO32− detection. IRMOF-10-Eu had good stability and excellent luminescence in aqueous solution. IRMOF-10-Eu showed dual fluorescence emission from the ligand and Eu3+ with single excitation. Upon treatment with CO32−, the fluorescence ratio (I624/I358) of the probe displayed significant change. The relative fluorescence intensity ratio (I624/I358) and CO32− concentration had a linear relationship in 50–300 μM range with a low detection limit of 9.58 μM. And the luminescence probe of CO32− showed a fast detection time. The possible mechanism was investigated. CO32− changed the structure of IRMOF-10-Eu and interrupted the energy transfer process. Thus, the fluorescence emission intensity of the ligand was increased and Eu3+ was decreased with the addition of CO32−. IRMOF-10-Eu was used to detect CO32− in seawater, which showed good prospect in practical application. Subsequently, a highly selective and sensitive probe, IRMOF-10-Eu, may pave an efficient way for CO32− detection in seawater.

Graphical abstract: A dual emission metal–organic framework for rapid ratiometric fluorescence detection of CO32− in seawater

Supplementary files

Article information

Article type
Paper
Submitted
20 Mar 2020
Accepted
17 Jun 2020
First published
29 Jun 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 24764-24771

A dual emission metal–organic framework for rapid ratiometric fluorescence detection of CO32− in seawater

Y. Wei and Y. Xia, RSC Adv., 2020, 10, 24764 DOI: 10.1039/D0RA02581J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements