Issue 21, 2020

Surface states mediated charge transfer in redox behavior of hemin at GaAs(100) electrodes

Abstract

EIS and XPS investigations on the interaction of hemin with p- and n-doped GaAs(100) electrodes in PBS solution revealed significant differences concerning both the adsorbed species and the mechanism of the redox process caused by dopant nature. XPS data show that hemin is adsorbed on p-GaAs(100) by its carboxyl groups and adopts a vertical position favorable to a polymeric film formation whereas on n-GaAs(100), the adsorbed hemin is monomeric and has a rather planar configuration involving mainly the OH groups of the organic molecule. Hemin gives rise to a reversible redox process at the p-GaAs(100) electrode whereas at n-GaAs(100), there is only one reduction wave of a considerably lower current density appearing at a more negative potential. The effects of the applied potential on the phase angle measured at p-GaAs(100) point out major changes not only in the insulating properties of the adsorbed layer, as found at n-GaAs(100), but also in the electronic properties of the semiconductor triggered by the hemin redox process. Analysis of the experimental data points to a mechanism of charge transfer through surface states, the observed differences being related to the location of the surface states with respect to the formal potential of the hemin redox couple.

Graphical abstract: Surface states mediated charge transfer in redox behavior of hemin at GaAs(100) electrodes

Supplementary files

Article information

Article type
Paper
Submitted
17 Feb 2020
Accepted
20 Mar 2020
First published
26 Mar 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 12318-12325

Surface states mediated charge transfer in redox behavior of hemin at GaAs(100) electrodes

M. Enache, C. Negrila and V. Lazarescu, RSC Adv., 2020, 10, 12318 DOI: 10.1039/D0RA01508C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements