Issue 39, 2020, Issue in Progress

A porous nano-adsorbent with dual functional groups for selective binding proteins with a low detection limit

Abstract

In this study, porous silica nanoparticles functionalized with a thiol group (SiO2–SH NPs) were synthesized via a one-pot method. Subsequently, iminodiacetic acid was modified, and further adsorption of Ni2+ ions was conducted to obtain a SiO2–S/NH–Ni nano-adsorbent. Then, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TG) and X-ray diffraction (XRD) were employed to characterize its morphology and composition. The results indicate that the SiO2–S/NH–Ni nano-adsorbent is porous, has an average diameter of 77.1 nm and has a small porous structure of about 3.7 nm in the silica skeleton. The Brunauer–Emmett–Teller (BET) surface area and total pore volume were 537.2 m2 g−1 and 3.3 cm3 g−1, respectively, indicating a large BET surface area. The results indicate that the as-prepared SiO2–S/NH–Ni nano-adsorbent would be suitable to selectively and efficiently bind His-tagged proteins from an E. coli cell lysate. The SDS-PAGE results show that the as-prepared nano-adsorbent presents specifically to both His-tagged CPK4 and His-tagged TRX proteins, indicating the nano-adsorbent can be used to effectively separate His-tagged proteins and is universal to all His-tagged fusion proteins. We also found that the as-prepared nano-adsorbent exhibits a low detection limit (1.0 × 10−7 mol L−1) and a strong regeneration ability based on four regeneration experiments that were particularly suited to the separation of His-tagged proteins.

Graphical abstract: A porous nano-adsorbent with dual functional groups for selective binding proteins with a low detection limit

Article information

Article type
Paper
Submitted
07 Feb 2020
Accepted
14 May 2020
First published
17 Jun 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 23270-23275

A porous nano-adsorbent with dual functional groups for selective binding proteins with a low detection limit

X. Zou, Y. Zhang, J. Yuan, Z. Wang, R. Zeng, K. Li, Y. Zhao and Z. Zhang, RSC Adv., 2020, 10, 23270 DOI: 10.1039/D0RA01193B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements