Issue 19, 2020

Preparing and testing the reliability of long-afterglow SrAl2O4:Eu2+, Dy3+ phosphor flexible films for temperature sensing

Abstract

Owing to its stability and environment-friendly properties, the SrAl2O4:Eu2+, Dy3+ (SAOED) phosphor has attracted major scientific interest. With various applications, such as in emergency signage, luminous paints, and traffic signs, it can have a considerable impact on everyday activities. However, SrAl2O4 easily undergoes hydrolysis in the presence of atmospheric moisture. To remedy this, we prepared a phosphor film by spin coating to improve its water resistance. The SAOED was coated with epoxy resin glue without destroying the SrAl2O4 crystals. A series of reliability tests were conducted on the phosphor films and bare phosphors: high-temperature and high-humidity (HT) tests, thermal-cycling (TC) tests, and xenon lamp aging (XLG) tests. Then, the crystal phase, surface morphology, photoluminescence (PL), afterglow decay, and temperature-dependent PL were analyzed. The X-ray diffraction patterns show that the hydrolysis reaction of SAOED occurred easily, with the SrAl2O4 phase becoming the Sr3Al2 (OH)12 phase and SrAl3O5(OH) generated under HT tests. The PL intensity of the thin film of SAOED decreased 57.2%, 79.3%, and 98.8% after HT tests, XLG tests for 168 h, and TC tests with 10 repetitions from 233 K to 423 K, respectively. Moreover, the afterglow decay time of the SAOED phosphor film was longer than that of bare phosphors. The developed flexible films are excellent candidates for temperature sensing because they exhibit temperature-dependent PL intensity and are highly sensitive to surrounding temperature variation 300–420 K. Thus, SAOED films with stable luminescent signals can be used in energy-efficient, long-lasting temperature-sensing devices, which, apart from being environment-friendly, play a role in improving public safety infrastructure.

Graphical abstract: Preparing and testing the reliability of long-afterglow SrAl2O4:Eu2+, Dy3+ phosphor flexible films for temperature sensing

Article information

Article type
Paper
Submitted
20 Jan 2020
Accepted
04 Mar 2020
First published
20 Mar 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 11418-11425

Preparing and testing the reliability of long-afterglow SrAl2O4:Eu2+, Dy3+ phosphor flexible films for temperature sensing

L. Wang, Z. Shang, M. Shi, P. Cao, B. Yang and J. Zou, RSC Adv., 2020, 10, 11418 DOI: 10.1039/D0RA00628A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements