Jump to main content
Jump to site search


Poly(vinyl acetate-co-ethylene) particles prepared by surfactant-free emulsion polymerization in the presence of a hydrophilic RAFT/MADIX macromolecular chain transfer agent

Abstract

Poly(acrylamide-co-acrylic acid) (P(AAm-co-AA)-X) was prepared by RAFT/MADIX and used as hydrophilic macromolecular chain transfer agent (macroCTA) in the aqueous emulsion copolymerization of vinyl acetate (VAc) and ethylene. Stable latexes were obtained over a broad range of conditions with macroCTA contents ranging from 1 to 65 wt% (compared to the initial amount of VAc) and ethylene pressure from 10 to 100 bar. The different systems investigated generated latexes incorporating amorphous to semi-crystalline poly(vinyl acetate-co-ethylene) (P(VAc-co-E)) chains using macroCTA content as low as 1 wt% in absence of additional surfactant. The particle nucleation mechanism was investigated with the help of kinetic studies using cryogenic transmission electronic microscopy (cryoTEM) and was consistent with the concepts underlying polymerization-induced self-assembly (PISA). High solids content latexes were finally targeted with a formulation more in line with industrial constraints (0.4 wt% macroCTA, 35 bar ethylene pressure, semi-batch conditions). A stable P(VAc-co-E) latex was produced exhibiting a solids content of 38 wt%. This work provides an easy access to a full range of alternative stabilization modes for P(VAc-co-E) latexes and potentially to new VAE and EVA products.

Back to tab navigation

Supplementary files

Article information


Submitted
07 Sep 2020
Accepted
16 Oct 2020
First published
16 Oct 2020

This article is Open Access

Polym. Chem., 2020, Accepted Manuscript
Article type
Paper

Poly(vinyl acetate-co-ethylene) particles prepared by surfactant-free emulsion polymerization in the presence of a hydrophilic RAFT/MADIX macromolecular chain transfer agent

J. Delorme, O. Boyron, P. Dugas, P. Dufils, J. Wilson, V. Monteil, F. D'Agosto and M. Lansalot, Polym. Chem., 2020, Accepted Manuscript , DOI: 10.1039/D0PY01266A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements