Controlled synthesis of unsubstituted high molecular weight poly(para-phenylene) via Suzuki polycondensation-thermal aromatization methodology†
Abstract
Suzuki polycondensation-thermal aromatization methodology was developed as a versatile new route to structurally regular, unsubstituted high molecular weight poly(para-phenylene) (PPP). The utility of this methodology was demonstrated by synthesizing PPP from both cis- and trans-precursor prepolymers 1a–b. The structure of precursor prepolymers containing exclusively 1,4-repeating units with the hydroxyphenyl group at the chain end was determined by two-dimensional NMR spectroscopy. Pyrolysis of trans-poly(para-phenylene) precursor 1b resulted in complete aromatization to PPP containing an average of 110 phenylene units in the polymer chain. The thermal conversion of precursor polymers to polyphenylene is a straightforward process leading to pristine PPP without significant chain degradation as confirmed by solid-state NMR and TGA analysis. The characterization of PPP by solid-state NMR, UV-vis absorption, fluorescence emission and IR spectroscopy, TGA, and conductivity measurements exhibits significant features for electronic and photoelectronic application, such as broadened absorption, high thermal stability, and typical conducting properties.

Please wait while we load your content...