Jump to main content
Jump to site search


Chimeric γPNA-Invader probes: Using intercalator-functionalized oligonucleotides to enhance the DNA-targeting properties of γPNA

Abstract

Gamma peptide nucleic acids (γPNAs), i.e., single-stranded PNA strands that are modified at the γ-position with (R)-diethylene glycol, and Invader probes, i.e., DNA duplexes with +1 interstrand zipper arrangements of 2'-O-(pyren-1-yl)methyl-RNA monomers, are two types of nucleic acid mimics that are showing promise for sequence-unrestricted recognition of double-stranded (ds) DNA targets. We recently demonstrated that recognition of dsDNA targets with self-complementary regions is challenging for single-stranded high-affinity probes like γPNAs due to their proclivity for secondary structure formation, but no so for Invader probes, which are engineered to form readily denaturing duplexes irrespective of the target sequence context. In the present study, we describe an approach that mitigates these limitations and improves the dsDNA-recognition properties of γPNAs in partially self-complementary target contexts. Chimeric probes between γPNAs and individual Invader strands are shown to form metastable duplexes that i) are energetically activated for recognition of complementary mixed-sequence dsDNA target regions, ii) reduce γPNA dimerization, and iii) substantially improve the fidelity of the dsDNA-recognition process. Chimeric γPNA-Invader probes are characterized with respect to thermal denaturation properties, thermodynamic parameters associated with duplex formation, UV-Vis and fluorescence trends to establish pyrene binding modes, and dsDNA-recognition properties using DNA hairpin model targets.

Back to tab navigation

Supplementary files

Article information


Accepted
09 Jan 2020
First published
13 Jan 2020

Org. Biomol. Chem., 2020, Accepted Manuscript
Article type
Paper

Chimeric γPNA-Invader probes: Using intercalator-functionalized oligonucleotides to enhance the DNA-targeting properties of γPNA

R. Emehiser and P. J. Hrdlicka, Org. Biomol. Chem., 2020, Accepted Manuscript , DOI: 10.1039/C9OB02726B

Social activity

Search articles by author

Spotlight

Advertisements