Issue 44, 2020

Towards future physics and applications via two-dimensional material NEMS resonators

Abstract

Two-dimensional materials (2Dm) offer a unique insight into the world of quantum mechanics including van der Waals (vdWs) interactions, exciton dynamics and various other nanoscale phenomena. 2Dm are a growing family consisting of graphene, hexagonal-Boron Nitride (h-BN), transition metal dichalcogenides (TMDs), monochalcogenides (MNs), black phosphorus (BP), MXenes and 2D organic crystals such as small molecules (e.g., pentacene, C8 BTBT, perylene derivatives, etc.) and polymers (e.g., COF and MOF, etc.). They exhibit unique mechanical, electrical, optical and optoelectronic properties that are highly enhanced as the surface to volume ratio increases, resulting from the transition of bulk to the few- to mono- layer limit. Such unique attributes include the manifestation of highly tuneable bandgap semiconductors, reduced dielectric screening, highly enhanced many body interactions, the ability to withstand high strains, ferromagnetism, piezoelectric and flexoelectric effects. Using 2Dm for mechanical resonators has become a promising field in nanoelectromechanical systems (NEMS) for applications involving sensors and condensed matter physics investigations. 2Dm NEMS resonators react with their environment, exhibit highly nonlinear behaviour from tension induced stiffening effects and couple different physics domains. The small size and high stiffness of these devices possess the potential of highly enhanced force sensitivities for measuring a wide variety of un-investigated physical forces. This review highlights current research in 2Dm NEMS resonators from fundamental physics and an applications standpoint, as well as presenting future possibilities using these devices.

Graphical abstract: Towards future physics and applications via two-dimensional material NEMS resonators

Article information

Article type
Review Article
Submitted
21 Sep 2020
Accepted
28 Oct 2020
First published
28 Oct 2020

Nanoscale, 2020,12, 22366-22385

Towards future physics and applications via two-dimensional material NEMS resonators

T. Yildirim, L. Zhang, G. P. Neupane, S. Chen, J. Zhang, H. Yan, M. M. Hasan, G. Yoshikawa and Y. Lu, Nanoscale, 2020, 12, 22366 DOI: 10.1039/D0NR06773C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements