Issue 43, 2020

A controlling parameter of topological defects in two-dimensional covalent organic frameworks

Abstract

Synthesis of covalent organic frameworks with long-range molecular ordering is an outstanding challenge due to the fact that defects against predesigned topological symmetries are prone to form and break crystallization. The physical origins and controlling parameters of topological defects remain scarcely understood. By virtue of molecular dynamics simulations, we found that pentagons for combination [C4 + C4] and [C4 + C2] and heptagons for [C3 + C3] and [C3 + C2] were initial defects for growth dynamics with both uncontrolled and suppressed nucleation, further inducing more complex defects. The defects can be significantly reduced by achieving the growth with monomers added to a single nucleus, agreeing well with previous simulations and experiments. To understand the nature of defects, we proposed a parameter φ to describe the range of biased rotational angle between two monomers, within which chemical reactions are allowed. The parameter φ shows a monotonic relationship with defect population, which is demonstrated to be highly computable by using density functional theory calculations. When φ < 20, we can even observe defect-free growth for the four combinations, irrespective of growth dynamics. The results are essential for screening and designing condensation reactions for the synthesis of single crystals of high quality.

Graphical abstract: A controlling parameter of topological defects in two-dimensional covalent organic frameworks

Supplementary files

Article information

Article type
Paper
Submitted
16 Jul 2020
Accepted
01 Oct 2020
First published
02 Oct 2020

Nanoscale, 2020,12, 22107-22115

A controlling parameter of topological defects in two-dimensional covalent organic frameworks

Y. Zhu, H. Zhao, C. Fu, Z. Li and Z. Sun, Nanoscale, 2020, 12, 22107 DOI: 10.1039/D0NR05303A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements