Issue 39, 2020

Rational prediction of multifunctional bilayer single atom catalysts for the hydrogen evolution, oxygen evolution and oxygen reduction reactions

Abstract

Bimetallic atom catalysts (BACs), which can exhibit remarkable catalytic performance compared with single atom catalysts (SACs) due to their higher metal loading and the synergy between two metal atoms, have attracted great attention in research. Herein, by means of density functional theory calculations, novel BACs with a bilayer structure composed of monolayers FeN4 (Fe and nitrogen co-doped graphene) and MN4 (Fe/M, M represents transition metal atoms) as electrocatalysts for the hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), and oxygen evolution reaction (OER) are investigated. Among these bilayer SACs, a series of highly efficient monofunctional, bifunctional, and even trifunctional electrocatalysts have been screened. For example, the overpotentials for the HER, ORR, and OER can reach −0.02 (Fe/Cu), 0.31 (Fe/Hg), and 0.27 V (Fe/Hf), respectively; Fe/Hf and Ir/Fe can serve as promising bifunctional catalysts for the ORR/OER and HER/OER, respectively and Fe/Rh is considered as an excellent trifunctional catalyst for the HER, OER, and ORR. This work not only provides a new idea for understanding and optimizing the active sites of BACs, but also proposes a new strategy for designing high-performance multifunctional electrocatalysts for fuel cells and metal–air batteries.

Graphical abstract: Rational prediction of multifunctional bilayer single atom catalysts for the hydrogen evolution, oxygen evolution and oxygen reduction reactions

Supplementary files

Article information

Article type
Paper
Submitted
12 Jul 2020
Accepted
15 Sep 2020
First published
16 Sep 2020

Nanoscale, 2020,12, 20413-20424

Rational prediction of multifunctional bilayer single atom catalysts for the hydrogen evolution, oxygen evolution and oxygen reduction reactions

R. Hu, Y. Li, F. Wang and J. Shang, Nanoscale, 2020, 12, 20413 DOI: 10.1039/D0NR05202G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements