Issue 34, 2020

Remarkably high thermal-driven MoS2 grain boundary migration mobility and its implications on defect healing

Abstract

Two-dimensional (2D) transition-metal dichalcogenides (TMDs) hold great potential for many important device applications, such as field effect transistors and sensors, which require a robust control of defect type, density, and distribution. However, how to control the defect type, density, and distribution in these materials is still a challenge. In this study, we explore the kinetics and dynamics of four types of grain boundaries (GBs) in monolayer MoS2, which are composed of S-polar dislocation (S5|7), Mo-polar dislocation (Mo5|7), dislocation-double S vacancy complex (S4|6), and dislocation-double S interstitial complex (S6|8), respectively. Our study shows that these four GBs in monolayer MoS2 exhibit a great disparity in their migration behavior. More specifically, the S4|6 and S6|8 GBs possess a much higher migration mobility than the S5|7 and Mo5|7 GBs under the same thermal fluctuations or temperature gradient. Interestingly, the S4|6 and S6|8 GBs follow an abnormal relationship with temperature, due to the change in defect configurations with temperature. Our study further shows that the remarkably high mobilities of the S4|6 and Mo6|8 GBs may enable the reactions of GBs, leading to the annihilation and reduction of defect density. In addition, the movement of GBs in MoS2 under a temperature gradient field can cause defect redistribution, which in turn changes the thermal conductivity. The present study not only deepens our understanding of the dynamic evolution of GBs in TMDs, but also presents new opportunities to engineer GBs for novel electronic applications.

Graphical abstract: Remarkably high thermal-driven MoS2 grain boundary migration mobility and its implications on defect healing

Supplementary files

Article information

Article type
Paper
Submitted
19 May 2020
Accepted
29 Jul 2020
First published
30 Jul 2020

Nanoscale, 2020,12, 17746-17753

Remarkably high thermal-driven MoS2 grain boundary migration mobility and its implications on defect healing

X. Liu, Z. G. Yu, G. Zhang and Y. Zhang, Nanoscale, 2020, 12, 17746 DOI: 10.1039/D0NR03871G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements