Issue 32, 2020

Observing dynamic molecular changes at single-molecule level in a cucurbituril based plasmonic molecular junction

Abstract

In recent years, surface enhanced Raman spectroscopy (SERS) has emerged as a prominent tool for probing molecular interaction and reaction with single-molecule sensitivity. Here we use SERS to investigate the dynamic changes of the cucurbit[7]uril (CB[7]) based plasmonic molecular junctions in solution, which are spontaneously formed by the adsorption of gold nanoparticles (GNPs) at the CB[7] modified gold nanoelectrode (GNE) surface. The typical fingerprint Raman peaks of CB[7] are very weak in the SERS spectra. However, chemically enhanced peaks are prominent in the spectra due to the charge transfer across the metal–molecule interface through specific noncovalent interactions between the gold atoms and CB[7] or its guest molecule. We first investigated the selectively enhanced and greatly shifted C[double bond, length as m-dash]O peak of CB[7] in the SERS spectra. Based on the bias-dependent changes of the C[double bond, length as m-dash]O peak, we found the gold–carbonyl interaction was strengthened by the positive bias applied to the GNE, resulting in stable CB[7] junctions. Next, we found the CB[7] junction could also be stabilized by the inclusion of a guest molecule amino-ferrocene, attributed to the interactions between gold adatoms and the cyclopentadienyl ring of the guest molecule. Because this interaction is sensitive to the orientation of the guest molecule in the cavity, we revealed the rotational motion of a guest molecule inside the CB[7] cavity based on the dynamic spectral changes of the cyclopentadienyl ring peak.

Graphical abstract: Observing dynamic molecular changes at single-molecule level in a cucurbituril based plasmonic molecular junction

Supplementary files

Article information

Article type
Paper
Submitted
30 Apr 2020
Accepted
04 Aug 2020
First published
06 Aug 2020

Nanoscale, 2020,12, 17103-17112

Author version available

Observing dynamic molecular changes at single-molecule level in a cucurbituril based plasmonic molecular junction

Q. Ai, J. Zhou, J. Guo, P. Pandey, S. Liu, Q. Fu, Y. Liu, C. Deng, S. Chang, F. Liang and J. He, Nanoscale, 2020, 12, 17103 DOI: 10.1039/D0NR03360J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements