Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Insight into atomically dispersed porous M–N–C single-site catalysts for electrochemical CO2 reduction

Author affiliations

Abstract

Transition metal single-site catalysts have unique activities for electrochemical CO2 reduction. However, the exact active center and reaction mechanism remain unclear due to a number of challenges in the controllable synthesis of single-atom catalysts (SACs) and defects in metal supports. Here we combine both experimental and theoretical calculations to systematically explore the mechanistic reaction path of selected transition metal single sites on nitrogen-doped porous carbon. Facile pyrolysis was employed to prepare a fullerene type carbon with 0.35 nm interlayer distances to support the family of M–N–C (M = Ni, Fe, Co and Cu). Experimentally, Ni and Fe outperform the other metals with high faradaic efficiency up to >97% and 86.8%, respectively. The theoretical calculations reveal that Ni–N–C exhibits optimum activity for CO2 reduction to CO at a higher overpotential because of the moderate *CO binding energy at the Ni site, which accommodates *COOH formation and *CO desorption. Furthermore, the strong binding energy of *CO on the Fe site enables the catalyst to reduce CO2 beyond CO. A remarkable current density of 17.6 mA cm−2 has been achieved with the Ni–N–C catalyst and a record of 5.74 s−1 TOF has been realized at −0.8 V vs. RHE for the Ni–N–C catalyst.

Graphical abstract: Insight into atomically dispersed porous M–N–C single-site catalysts for electrochemical CO2 reduction

Back to tab navigation

Supplementary files

Article information


Submitted
21 Apr 2020
Accepted
05 Jul 2020
First published
10 Jul 2020

Nanoscale, 2020, Advance Article
Article type
Paper

Insight into atomically dispersed porous M–N–C single-site catalysts for electrochemical CO2 reduction

L. Takele Menisa, P. Cheng, C. Long, X. Qiu, Y. Zheng, J. Han, Y. Zhang, Y. Gao and Z. Tang, Nanoscale, 2020, Advance Article , DOI: 10.1039/D0NR03044A

Social activity

Search articles by author

Spotlight

Advertisements