Issue 2, 2020

Screening two dimensional materials for the transportation and delivery of diverse genetic materials

Abstract

In spite of several reports of graphene and other 2D materials concerning their capacity for biomolecular adsorption and delivery, recent toxicity evaluations found them to be nanotoxic toward different biomolecules, especially nucleic acids. Therefore, there is urgent demand for the synthesis of 2D materials exhibiting biocompatible and non-nanotoxic features. In this article, employing classical molecular dynamics simulations, we provide a benchmarking of h2D-C2N, graphene and hexagonal boron nitride (h-BN) toward the adsorption, preservation, targeting and delivery of various classes of nucleic acids namely single stranded DNA, double stranded natural as well as unnatural base substituted DNA and two different types of human telomeric guanine quadruplexes, all comprising different secondary structures. Our simulations reveal that, while h2D-C2N preserves the structures of most of the nucleic acids, graphene and h-BN disrupt them through strong π–π stacking with aromatic nucleobases. Interestingly, for the first time we identified a ‘quartet-by-quartet’ disruption mechanism of guanine quadruplexes, but only on graphene and h-BN. The lateral diffusion of adsorbed nucleic acids over C2N is restricted unlike that over both graphene and h-BN, thereby increasing the targeting efficacy for C2N. Modeling of the delivery phenomena suggests orders of magnitude longer release times from graphene and h-BN compared to C2N, thereby demonstrating the preferential suitability of C2N for all the hierarchical steps of nucleic acid transportation.

Graphical abstract: Screening two dimensional materials for the transportation and delivery of diverse genetic materials

Supplementary files

Article information

Article type
Paper
Submitted
12 Jul 2019
Accepted
13 Nov 2019
First published
14 Nov 2019

Nanoscale, 2020,12, 703-719

Screening two dimensional materials for the transportation and delivery of diverse genetic materials

T. K. Mukhopadhyay and A. Datta, Nanoscale, 2020, 12, 703 DOI: 10.1039/C9NR05930J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements