Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Electrohydrodimerization of biomass-derived furfural generates a jet fuel precursor

Author affiliations

Abstract

Despite the increasing interest in upgrading biomass-derived molecules to value-added products, the electrochemical conversion of biomass platform chemicals to highly valuable biofuels, such as jet fuel, has not yet received wide attention. Herein, we report a catalyst-free electrochemical route for the production of a jet fuel precursor, hydrofuroin, from the electrohydrodimerization of furfural, which can be readily derived from lignocellulose and already has an industrial production of 300 000 tons per year. Detailed electrochemical studies using carbon and copper electrodes at various pH values enabled us to probe the reduction mechanism of furfural and obtain the kinetic details, such as the diffusion constant and electron transfer rate. Preparative electrolysis in a batch electrolyzer achieved a high yield of hydrofuroin (94%) with an excellent faradaic efficiency of 93%. Finally, a flow electrolyzer was employed to demonstrate the great promise of large-scale production of hydrofuroin from the electrohydrodimerization of furfural.

Graphical abstract: Electrohydrodimerization of biomass-derived furfural generates a jet fuel precursor

Back to tab navigation

Supplementary files

Article information


Submitted
20 May 2020
Accepted
13 Jul 2020
First published
13 Jul 2020

Green Chem., 2020, Advance Article
Article type
Paper

Electrohydrodimerization of biomass-derived furfural generates a jet fuel precursor

X. Shang, Y. Yang and Y. Sun, Green Chem., 2020, Advance Article , DOI: 10.1039/D0GC01720E

Social activity

Search articles by author

Spotlight

Advertisements