Issue 4, 2020

Facile synthesis of “digestible”, rigid-and-flexible, bio-based building block for high-performance degradable thermosetting plastics

Abstract

Plastics are indispensable in modern society, but are non-sustainable resources, releasing hazardous chemicals during their service life, and post-disposal issues make traditional plastics a risk. Herein, we report a “digestible”, rigid-and-flexible, bio-sourced building block for high-performance degradable plastics. This building block was synthesized from the bioresources vanillin (lignin derivative) and glycerol through solvent-free acetalization with a high conversion rate and high selectivity. It could be extremely rapidly degraded into non-toxic vanillin and glycerol under mild acidic conditions even at a similar pH and temperature to gastric juice in the human stomach (“digested”), resulting in the outstanding chemical degradability of its corresponding epoxy thermosets, which is beneficial for their recycling. By virtue of the benzene ring, heterocycle, and methoxyl group-related hydrogen bond, the degradable thermosetting plastic showed much higher mechanical properties (stronger and tougher) and comparable thermal properties relative to a commercial high-performance counterpart based on bisphenol A (BPA). This favorable performance combination has never been reported for plastics. Thus, this bio-derived building block exhibits great potential as a sustainable and upgraded alternative to petroleum-sourced aromatic chemicals such as BPA for high-performance plastics.

Graphical abstract: Facile synthesis of “digestible”, rigid-and-flexible, bio-based building block for high-performance degradable thermosetting plastics

Supplementary files

Article information

Article type
Paper
Submitted
23 Nov 2019
Accepted
14 Jan 2020
First published
15 Jan 2020

Green Chem., 2020,22, 1275-1290

Facile synthesis of “digestible”, rigid-and-flexible, bio-based building block for high-performance degradable thermosetting plastics

B. Wang, S. Ma, Q. Li, H. Zhang, J. Liu, R. Wang, Z. Chen, X. Xu, S. Wang, N. Lu, Y. Liu, S. Yan and J. Zhu, Green Chem., 2020, 22, 1275 DOI: 10.1039/C9GC04020J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements