Factors impacting lipid digestion and β-carotene bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): oil droplet concentration
Abstract
Food, nutrition, and pharmaceutical scientists are trying to elucidate the major factors impacting the bioavailability of macronutrients (e.g., lipids) and micronutrients (e.g., vitamins) so as to improve their efficacy. Currently, there is still a limited understanding of how food matrix effects impact digestion and bioaccessibility determined under the INFOGEST model, which is currently the most widely used standardized in vitro gastrointestinal model. Therefore, we examined the impact of corn oil concentration on lipid digestion and β-carotene bioaccessibility using model food emulsions. For all oil concentrations tested (2.5 to 20%), complete lipid digestion was achieved using fed-state gastrointestinal conditions, which could only be seen if a back-titration was performed. The particle size and negative surface potential on the mixed micelles formed at the end of the small intestine phase both increased with increasing oil concentration, which was attributed to the generation of more free fatty acids. The β-carotene bioaccessibility increased when the oil concentration was raised from 2.5 to 10% due to the increased solubilization capacity of the mixed micelles, but then it decreased when the oil concentration was raised further to 20% due to precipitation and sedimentation of some of the β-carotene. The maximum β-carotene bioaccessibility (93.2%) was measured at 10% oil. These results indicate that the oil concentration of emulsions influences β-carotene bioaccessibility by altering digestion, solubilization, and precipitation processes. This knowledge is important when designing more effective functional or medical food products.