Issue 9, 2020

Controlling lipid intestinal digestibility using various oil structuring mechanisms

Abstract

This research demonstrates the ability to direct the rate and extent of lipid hydrolysis of oleogels using a combination of different structuring agents. Combinations of ethyl cellulose (EC) (20 cP and 45 cP) and commercial mixture of mono and di-glycerides (E471), at different ratios, were examined. The results suggest that the combination of E471 and EC significantly affects both gel physical properties and intestinal lipolysis. The gelation profile of the combined system demonstrated the EC sol–gel transition, which is characterized by G′ = G′′ at high temperatures (∼100 °C) followed by a soft-to-hard gel transition at low temperatures ∼30 °C, which corresponds to E471 crystallization. Such a profile suggests the formation of two gel networks, with the polymer network acting as a platform for E471 crystallization. Mechanical analysis reveals harder gels in the E471 : EC 20 cP mixture compared with the simple addition of each component contribution, suggesting a synergistic effect with a typical maximum at 7 : 3 E471 : EC 20 cP ratio. No significant additive effect was observed for E471 : EC 45 cP mixtures. Maximum lipolysis in the order of EC < E471 : EC < E471 was obtained, implying an effect of the structuring agent used on the lipolysis profile. A first-order kinetics analysis fitted to the lipolysis profiles demonstrated rate constant values in the order of E471 < E471 : EC < EC. Such behavior was attributed to the oil state, liquid vs. solid, and the network strength, both of which limit the lipase activity by hindering liquid TAG accessibility. Overall, the results demonstrate the ability to control gel properties and hydrolysis by manipulating gel composition. Such rational design can be exploited when developing new fat mimetic systems aimed at controlling the lipid digestion profile or the release of hydrophobic components present in the oil phase.

Graphical abstract: Controlling lipid intestinal digestibility using various oil structuring mechanisms

Article information

Article type
Paper
Submitted
24 Jan 2020
Accepted
07 Aug 2020
First published
14 Aug 2020

Food Funct., 2020,11, 7495-7508

Controlling lipid intestinal digestibility using various oil structuring mechanisms

A. Ashkar, J. Rosen-Kligvasser, U. Lesmes and M. Davidovich-Pinhas, Food Funct., 2020, 11, 7495 DOI: 10.1039/D0FO00223B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements