Issue 7, 2020

Vanillin inhibits PqsR-mediated virulence in Pseudomonas aeruginosa

Abstract

Reduced efficacy of antibiotics in bacterial diseases is a global concern in clinical settings. Development of anti-virulence compounds which disarm bacterial virulence is an attractive therapeutic agent for complementary antibiotics usage. One potential target for anti-virulence compounds is quorum sensing (QS), the intercellular communication system in most pathogens, such as Pseudomonas aeruginosa. QS inhibitors (QSIs) can inhibit QS effectively, attenuate QS-mediated virulence, and improve host clearance of infections. While studies focused on developing homoserine-based las QSI, few targeted the quinolone-based pqs QS, which implicated host cytotoxicity and biofilm formation. It is imperative to develop novel anti-pqs-QS therapeutics for combinatorial antibiotic treatment of microbial diseases. We employed a gfp-based transcriptional pqs biosensor to screen a natural compounds library and identify vanillin (4-hydroxy-3-methoxybenzaldehyde), the primary phenolic aldehyde of vanilla bean. The vanillin inhibited pqs expression and its associated phenotypes, namely pyocyanin production and twitching motility in P. aeruginosa. Molecular docking results revealed that vanillin binds to the active site of PqsR, the PQS-binding response regulator. Combinatorial treatment of vanillin with antimicrobial peptide (colistin) inhibited biofilm growth in vitro and improved treatment in the in vivo C. elegans acute infection model. We demonstrated that vanillin could dampen pqs QS and associated virulence, thus providing novel therapeutic strategies against P. aeruginosa infections.

Graphical abstract: Vanillin inhibits PqsR-mediated virulence in Pseudomonas aeruginosa

Article information

Article type
Paper
Submitted
07 Jan 2020
Accepted
24 Jun 2020
First published
30 Jun 2020

Food Funct., 2020,11, 6496-6508

Vanillin inhibits PqsR-mediated virulence in Pseudomonas aeruginosa

N. Mok, S. Y. Chan, S. Y. Liu and S. L. Chua, Food Funct., 2020, 11, 6496 DOI: 10.1039/D0FO00046A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements