Pyrroloquinoline quinone inhibits the production of inflammatory cytokines via the SIRT1/NF-κB signal pathway in weaned piglet jejunum
Abstract
The small intestine is an important digestive organ and plays a vital role in the life of a pig. In this study, we explored the regulatory role and molecular mechanism of pyrroloquinoline quinone (PQQ) on intestinal health and to discussed the interaction between PQQ and vitamin C (VC). A total of 160 healthy piglets weaned at 21 d were randomly divided into four treatment groups according to 2 × 2 factoring. The results showed that dietary PQQ could significantly decrease the levels of plasma globulin, albumin/globulin (A/G), indirect bilirubin (IBIL), blood urea nitrogen (BUN), creatinine (CREA) (P < 0.05 for each), total bilirubin, (TBIL) (P < 0.01), diamine oxidase (DAO) (P < 0.01) and immunoglobulin G (IgG) (P < 0.0001) and increase the levels of immunoglobulin A (IgA) and immunoglobulin M (IgM) (P < 0.0001) in the plasma of weaned piglets. Similarly, dietary VC could significantly decrease the levels of plasma globulin, A/G, DAO (P < 0.05 for each) and IgG (P < 0.0001) and increase the levels of IgA and IgM (P < 0.0001) in the plasma of weaned piglets. In addition, dietary PQQ increased (P < 0.05) the mRNA levels of antioxidant genes (NQO1, UGT1A1, and EPHX1), thereby enhancing (oxidized) nicotinamide adenine dinucleotide (NAD+) concentration and sirtuin 1 (SIRT1) activity in tissues. However, the addition of 200 mg kg−1 VC to the diet containing PQQ reduced most of the effects of PQQ. We further show that PQQ reduced (P < 0.05) the expression of inflammation-related genes (IL-2, IL-6, TNF-α, and COX-2) via the SIRT1/NF-κB deacetylation signaling. In conclusion, our data reveals that PQQ exerts a certain protective effect on the intestines of piglets, but higher concentrations of VC react with PQQ, which inhibits the regulatory mechanism of PQQ.
 
                




 Please wait while we load your content...
                                            Please wait while we load your content...
                                        