Jump to main content
Jump to site search


Trends in microbiological drinking water quality violations across the United States

Author affiliations

Abstract

This study analyzed temporal trends in health-based drinking water quality violations, and both temporal and geographic trends in microbiological drinking water quality violations for U.S. public water systems. We especially focused on microbiological regulations that apply to all public water systems, i.e., the total coliform rule (TCR), which became effective in 1990, and its successor, the revised total coliform rule (RTCR), which was implemented in 2016. By using the U.S. Environmental Protection Agency (EPA)'s Safe Drinking Water Information System, we determined that changes in regulations greatly impacted temporal trends in health-based violations. TCR health-based violations were the most common type of health-based violation, partly because the TCR required more monitoring than any other regulation and was one of the few rules that applied to transient non-community water systems, which make up a large fraction of all public water systems and often have limited resources. As expected by the U.S. EPA, the implementation of the RTCR caused an immediate decrease in the number of health-based violations due to specific changes in what constitutes a health-based violation under the RTCR versus the TCR. The number and severity of health-based coliform violations varied with system size and type, and this imbalance was exacerbated under the RTCR. Notably, while very small public water systems and transient non-community water systems already had more violations per system than their counterparts, this disparity was amplified upon adoption of the RTCR. Geographic analyses showed that the Great Lakes region had high numbers of total health-based coliform violations. While fewer data exist to analyze violations normalized by the number of systems, an initial exploration of health-based coliform violations per system resulted in different geographic patterns. We conclude with a discussion of the potential benefits of future predictive modeling to identify public water systems that would benefit from technical and financial assistance to improve their water quality.

Graphical abstract: Trends in microbiological drinking water quality violations across the United States

Back to tab navigation

Article information


Submitted
31 Jul 2020
Accepted
03 Sep 2020
First published
18 Sep 2020

This article is Open Access

Environ. Sci.: Water Res. Technol., 2020, Advance Article
Article type
Paper

Trends in microbiological drinking water quality violations across the United States

S. Michielssen, M. C. Vedrin and S. D. Guikema, Environ. Sci.: Water Res. Technol., 2020, Advance Article , DOI: 10.1039/D0EW00710B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements