Issue 4, 2020

Nanomaterials for radioactive wastewater decontamination

Abstract

Radioactive waste is a byproduct of nuclear power generation and applications of various radioactive materials in many commercial sectors. This waste has been strictly regulated as a highly hazardous material to all forms of life as well as the environment. The technologies currently adopted for managing radioactive waste are mainly based on segregation and storage. Ideally, radioactive waste should be isolated from entering the environment, but there has been slow progress toward sustainable waste management. Nanomaterials, with unique physical and chemical properties, such as the nanosize effect, large specific surface area, and high reactivity and selectivity, have become new materials for radioactive wastewater decontamination. Therefore, this review aims to provide a comprehensive overview and analysis of a newer generation of nanomaterials that have been demonstrated to be effective for radioactive wastewater decontamination, such as carbon-based nanomaterials, metal nanoparticles, nanosized metal oxides, metal sulfides, nanosized natural materials, layered double hydroxides, hydroxyapatite nanoparticles, metal–organic frameworks, cellulose nanomaterials, and biogenic nanocomposites. Although many different types of nanomaterials have been developed, their engineering feasibility toward radioactive wastewater decontamination has not yet been demonstrated for real-world large-scale applications. Lastly, the challenges associated with the applications of nanomaterials for radioactive wastewater decontamination have been discussed in detail while shedding light on future research directions.

Graphical abstract: Nanomaterials for radioactive wastewater decontamination

Article information

Article type
Critical Review
Submitted
25 Nov 2019
Accepted
21 Feb 2020
First published
25 Feb 2020

Environ. Sci.: Nano, 2020,7, 1008-1040

Nanomaterials for radioactive wastewater decontamination

X. Zhang and Y. Liu, Environ. Sci.: Nano, 2020, 7, 1008 DOI: 10.1039/C9EN01341E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements