Jump to main content
Jump to site search

Issue 10, 2020
Previous Article Next Article

Synchrotron X-ray quantitative evaluation of transient deformation and damage phenomena in a single nickel-rich cathode particle

Author affiliations

Abstract

The performance and durability of Ni-rich cathode materials are controlled in no small part by their mechanical durability, as chemomechanical breakdown at the nano-scale leads to increased internal resistance and decreased storage capacity. The mechanical degradation is caused by the transient lithium diffusion processes during charge and discharge of layered oxide spherical cathode micro-particles, leading to highly anisotropic incompatible strain fields. Experimental characterisation of the transient mechanisms underlying crack and void formation requires the combination of very high resolution in space (sub-micron) and time (sub-second) domains without charge interruption. The present study is focused on sub-micron focused operando synchrotron X-ray diffraction and in situ Ptycho-Tomographic nano-scale imaging of a single nano-structured LiNi0.8Co0.1Mn0.1O2 core–shell particle during charge to obtain a thorough understanding of the anisotropic deformation and damage phenomena at a particle level. Preferential grain orientation within the shell of a spherical secondary cathode particle provides improved lithium transport but is also associated with spatially varying anisotropic expansion of the hexagonal unit cell in the c-axis and contraction in the a-axis. These effects were resolved in relation to the grain orientation, and the link established with the nucleation and growth of intergranular cracks and voids that causes electrical isolation of active cathode material. Coupled multi-physics Finite Element Modelling of diffusion and deformation inside a single cathode particle during charge and discharge was validated by comparison with experimental evidence and allowed unequivocal identification of key mechanical drivers underlying Li-ion battery degradation.

Graphical abstract: Synchrotron X-ray quantitative evaluation of transient deformation and damage phenomena in a single nickel-rich cathode particle

Back to tab navigation

Supplementary files

Article information


Submitted
19 Jul 2020
Accepted
27 Aug 2020
First published
27 Aug 2020

This article is Open Access

Energy Environ. Sci., 2020,13, 3556-3566
Article type
Paper

Synchrotron X-ray quantitative evaluation of transient deformation and damage phenomena in a single nickel-rich cathode particle

L. Romano Brandt, J. Marie, T. Moxham, D. P. Förstermann, E. Salvati, C. Besnard, C. Papadaki, Z. Wang, P. G. Bruce and A. M. Korsunsky, Energy Environ. Sci., 2020, 13, 3556
DOI: 10.1039/D0EE02290J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements